REHABILITACIÓN ENERGÉTICA

Si nos basamos en los datos del gobierno, en los que se afirma que en la actualidad, “más del 58 % del parque edificado es anterior al año 1980 y existen, aproximadamente, 25 millones de viviendas, de las que la mitad tienen más de 30 años y cerca de 6 millones cuentan con más de 50 años”, además “casi el 58 % de nuestros edificios se construyó con anterioridad a la primera normativa que introdujo en España unos criterios mínimos de eficiencia energética: la Norma Básica de la Edificación NBE-CT-79”, no cabe la menor duda de que considerando los objetivos europeos y por lo tanto nacionales, son necesarias una serie de medidas de rehabilitación que permitan reducir el consumo de energía y que reduzcan las emisiones de gases de efecto invernadero producidos en el sector, es pues prioritario mediante la rehabilitación, aplicar una serie de medidas para lograr una renovación del parque edificado.

Para lograr los objetivos marcados a nivel europeo (Directiva 2012/27/UE, relativa a la eficiencia energética), es necesaria una estrategia a largo plazo, siendo la fecha limite el 2020. Como ya hemos estudiado, la importancia de una correcta ejecución de los diferentes elementos que componen los sistemas constructivos, así como las características de los materiales aislantes que se utilicen es clave para reducir la situación de insostenibilidad actual en la que se encuentran más de la mitad de los edificios en España.

De modo que la rehabilitación, renovación y aplicación de los diferentes sistemas que se han estudiado a lo largo de las distintas entradas ya publicadas pueden suponer importantes ahorros energéticos, decantándonos por la rehabilitación en lugar del derribo, ya que supondrá un menor impacto ambiental y sobre todo se logrará prolongar la vida útil de esas edificaciones.

Quisiera recordar que todo lo que se ha defendido durante todas las publicaciones referidas al tema, va dirigido a la mejora de las condiciones de habitabilidad, sin olvidarnos de la mejora de la eficiencia y el objetivo claro de reducir la dependencia energética de fuentes de energía convencionales. Para lograr alcanzar niveles máximos de confort, así como aprovechar al máximo la energía producida, hay que destacar la importancia capital que tiene la correcta ejecución de la envolvente del edificio, de nada sirve aplicar los mejores sistemas de generación más renovables y eficientes, si la envolvente es ineficiente desde el punto de vista energético.

En el código técnico podemos encontrar 2 tipos de envolventes, la envolvente térmica y la edificatoria, ésta última “se compone de todos los cerramientos del edificio”, mientras que la envolvente térmica “está compuesta por lo cerramientos que limitan espacios habitables con el ambiente exterior (aire, terreno u otro edificio) y por todas las particiones interiores que limitan los espacios habitables de los no habitables que a su vez estén en contacto con el ambiente exterior

Tal y como hemos visto la normativa aplicable en nuestro país en relación a las condiciones de la edificación en cuanto al consumo energético, es el Código Técnico de la Edificación, de manera más concreta su Documento Básico relativo al ahorro de energía (CTE-DB-HE1): “conseguir un uso racional de la energía necesaria para la utilización de los edificios reduciendo a limites sostenibles su consumo y conseguir asimismo que una parte de este consumo proceda de fuentes de energía renovable, como consecuencia de las características de su proyecto, construcción, uso y mantenimiento”.

 

Envolvente Comparativa

Imagen: Cuantificación de la mejora del comportamiento térmico de la envolvente. Fuente: eHabilita

 

Por lo tanto, la rehabilitación energética deberá concentrar sus objetivos en la adecuación de las viviendas anteriores a la normativa vigente, pudiéndose lograr reducciones de entre 35 y el 70% dependiendo de la antigüedad del edificio.

Para lograr una disminución del consumo, mediante la reducción de la energía disipada al exterior, una solución cada vez más extendida en rehabilitación es la utilización de Sistemas de Aislamiento Térmico Exterior (SATE), principalmente se utilizan con el fin de minimizar las molestias para los usuarios. Son sistemas que se suministran como conjunto (kit), para asegurar la compatibilidad de todos los componentes, de este modo se reviste y aísla el exterior del edificio adaptándose a las geometrías del mismo, sin discontinuidades, con lo que se logra resolver la mayoría de los puentes térmicos.

 

Esquema SATE

Imagen: Esquema sistema de Aislamiento Térmico Exterior (SATE). Fuente: interempresas.net

 

Además de mejorar la envolvente térmica de la edificación, para conseguir la disminución del consumo se deben adoptar  medidas de distinta índole, resumiéndolas a continuación:

 

–        Reducción de la demanda energética, para lo que se consideran básicamente dos factores, la zona climática y las condiciones de la envolvente térmica de la edificación, basándonos en la capacidad de aprovechar las condiciones climáticas favorables mediante el diseño del edificio.

 

–        Mejora del rendimiento de las instalaciones e incorporación de energías renovables en la producción energética y reducir el consumo de agua. Basándonos en la aplicación de los Documentos básicos de HE.

 

–        Gestión energética. Utilización de sistemas de iluminación (LED), así como la utilización de electrodomésticos de bajo consumo, es decir, renovar de elementos que componen las instalaciones, además es aconsejable la aplicación de sistemas de control y seguimiento, domótica e inmótica.

 

Entre las diferentes intervenciones que se deben acometer para la mejora de la envolvente térmica cabe destacar el implemento de la capacidad aislante del cerramiento, suponiendo un periodo de amortización mayor que la mejora de las instalaciones, sin embargo son aplicaciones que combinadas generan una mejor respuesta, la simbiosis entre ambas es indudable, por lo que se procurará acometer ambas de  una manera equilibrada.

Si hablamos de instalaciones térmicas, cabria mencionar, como ya se ha hecho en anteriores ocasiones, los  sistemas de suelo o paramentos radiantes, este tipo de sistemas a diferencia de los tradicionales mediante radiadores, suponen una mejora en la  uniformidad de la distribución del calor en el local que se desee climatizar. Para su aplicación es aconsejable la utilización de materiales cerámicos de gran inercia térmica, siendo los más adecuados por sus características térmicas, no debemos olvidar que para emitir calor al local antes debe calentar toda la masa térmica del paramento.

 

Dispersion Suelo Radiante vs Radiadores

Imagen: Dispersión de suelo radiante y radiadores. Fuente: Soltermia Energies Renovables

 

Hecho este pequeño inciso, nos debemos detener y valorar, los factores de los que va a depender la elección de un sistema u otro, en cuanto a las instalaciones térmicas del edificio objeto de la rehabilitación.

Lo primero que tenemos que determinar y en lo que nos debemos basar, es en el estado en el que se encuentra la edificación objetivo de dicha rehabilitación, dependiendo de las necesidades primordiales, tras analizar y determinar que actuaciones son prioritarias. Por ejemplo, no tiene sentido instalar sistemas de suelos radiantes cuando tenemos un muro medianero en el que se están produciendo enormes pérdidas energéticas o una carpintería obsoleta. Además, es importante centrar la actuación en el sistema mediante el cual se genera la energía, dependiendo de las instalaciones ya presentes se deberá implementar un sistema acorde a la obtención de los rendimientos más adecuados de dicho sistema.

También, basándonos en la zona climática en las que se encuentre el edificio existirán unas mayores necesidades en refrigeración o en calefacción. Por último, es destacable el uso que se le dará al edificio, así como el presupuesto del que se dispone para ejecutar la actuación, de manera que se debe priorizar. Una buena manera de hacerlo es observar que aspectos de la certificación energética de la edificación en cuestión presentan mayores deficiencias.

ENERGÍA SOLAR FOTOVOLTAICA

Los sistemas fotovoltaicos, basándose en las propiedades de los materiales semiconductores, transforman radiación solar en energía eléctrica, para ello no se utilizan reacciones químicas o procesos mecánicos que requieran partes móviles. Este proceso se desarrolla a través de un elemento semiconductor denominado célula fotovoltaica, ésta recibe la radiación solar y los fotones de la luz solar transmiten su energía a los electrones del semiconductor para que de ése modo circulen dentro del sólido. Esta tecnología permite que parte de estos electrones salgan al exterior del material semiconductor generando así una corriente eléctrica suficiente para conducirla por un circuito externo.

Tras conectar las células fotovoltaicas y encapsularlas obtenemos los sistemas de paneles o módulos fotovoltaicos. El correcto funcionamiento de estos módulos depende de la radiación solar y la temperatura de funcionamiento, para poder medir correctamente la potencia suministrada por cada modulo, y así comparar correctamente los diferentes tipos se ha normalizado para una temperatura de funcionamiento de 25°C y una radiación solar media de 1000 W/m², midiéndose la potencia de cada módulo en vatios pico. Esta unidad de energía producida, se obtiene multiplicando la potencia nominal por las horas con más intensidad de sol, es decir, dividiendo la energía producida durante el día por la media de 1000  W/m², en España esta media varía según la región entre 6 a 8 horas en verano y 2 a 4 horas en invierno dependiendo de la zona climática.

Podemos diferenciar dos tipos principales de sistemas para utilizar este tipo de energía:

Sistemas aislados: en este tipo de instalaciones eléctricas, la energía se almacena en baterías para utilizarlas cuando sea necesaria. Se emplean en los lugares en los que no se tiene acceso a la red eléctrica y es una solución económica de obtener energía.

Debido a que los paneles solo producen energía durante las horas de sol, es necesaria la instalación de un sistema de acumulación, que pueda suministrar electricidad durante los periodos nocturnos o los días con menor radiación solar. Dependiendo la zona climática y el consumo previsto, por lo tanto tendrá que adaptarse adecuadamente la acumulación para evitar por ejemplo el sobredimensionamiento.

Su esquema compositivo es básico, consta de:

  • Generador fotovoltaico: encargado de transformar la energía solar en energía eléctrica y cargar con ella las baterías.

 

  • Regulador de la carga: evita que se produzcan sobrecargas o descargas excesivas, generalmente incorporan un control de seguimiento.

 

  • Acumulador: son las baterías que proporcionan la electricidad previamente acumulada cuando no hay radiación solar.

 

  • Inversor: modifica la corriente continua que generan los paneles solares convirtiéndola en alterna, es decir, de uso domestico.

Debido a que es un sistema básico, su versatilidad es total, podemos encontrar infinidad de usos, para este tipo de sistemas, son sistemas totalmente inocuos, no requieren apenas mantenimiento y su proceso de amortización es inmediato.

Sistemas conectados: se utilizan en lugares donde no se dispone de una instalación eléctrica, su uso favorece la reducción de emisiones de CO₂ a la atmosfera, toda su energía se envía a la red convencional de electricidad para su distribución posterior donde sea necesaria. En este caso el tamaño de la instalación no depende del consumo de electricidad de la edificación, para dimensionarla únicamente se debe tener en cuenta el espacio y la inversión que se quiera realizar.

Está compuesta principalmente por tres elementos, el generador, el inversor y los contadores, un contador principal mide la energía que se produce (kw/h) y es enviada a la red.

Sus aplicaciones son igual de variadas que para el anterior sistema, integrándose a la red convencional y aportando electricidad limpia y sana. Como ejemplo de aplicación en zonas urbanas podríamos destacar el proyecto de alumbrado público de la ciudad de Bilbao, obra del arquitecto vasco Xavier Pérez.

uTree

Imagen: Prototipo uTree. Fuente: renewableenergiesdevices.com

 La propuesta presentada en el concurso “Plan Solar de Navarra 2012”,  integra estos sistemas de captación solar, generando energía para uso público.

Este aprovechamiento de la radiación a pequeña escala contrasta con las pretensiones de los científicos más prestigiosos del mundo que estudian la posibilidad de generar la energía solar directamente en el espacio y transmitirla a la tierra, de esta manera se ganaría en eficiencia ya que no existiría la “barrera atmosférica”, que impide que una gran parte de la radiación solar llegue a la superficie de la tierra. Es interesante mencionar este proyecto para comprender un poco mejor el aspecto global que pueden alcanzar este tipo de tecnologías, además de que podrían suponer grandes cambios en la concepción arquitectónica del futuro de hacerse realidad.

SPS-Alpha

Imagen: Solar Power Satellite (SPS – ALPHA). Fuente: nomadaq.com

Este proyecto que consiste en una matriz de pétalos formada por miles de cristales que dirigen la luz solar hacia las células solares, siendo éstas las que la transforman enviándola a la Tierra en forma de microondas, es una propuesta de John Mankins de Artemis Innovation Management Solutions, basándose en la forma en que las flores captan y metabolizan la radiación solar.

El principal problema que existe con las células fotovoltaicas es su baja eficiencia, capaces de transformar una reducida cantidad de la energía solar total que incide sobre ellas. Actualmente se están planteando la utilización de nuevos materiales en su fabricación, para reducir los costes, además de aumentar su eficiencia energética, según estudios a nivel europeo “en los últimos dos años se ha reducido el coste un 70%, alargando además la vida útil de los nuevos captadores hasta 30 años”.

El material más común es el silicio, sin embargo otro tipo de células, las llamadas “células de capa fina”, usan otros materiales como el cobre, indio, galio y selenio, utilizan mucha menos materia prima lo que reduce enormemente los costes de producción y su uso se podrá aplicar a todo tipo de soluciones, desde fachadas, suelos, superficies móviles, etc. Además, se están utilizando nuevas tipologías como las llamadas capas transparentes y aplicar sus propiedades translucidas como una forma de incluirlas en las ventanas de los edificios directamente en su fabricación.

A parte de los materiales, los institutos de investigación más prestigiosos del mundo, como es el caso del MIT (Instituto Tecnológico de Massachusetts), realizan experimentos para modificar la manera en que se obtiene la energía. Los investigadores han logrado obtener de cada fotón dos electrones, en lugar de uno, lo que mejora la eficiencia del modulo aumentando la eficiencia hasta valores superiores del 30%, además de crear células solares finas sobre un papel, una esperanzadora tecnología que permitiría instalarlas sobre cualquier tipo de superficie, sin embargo su baja eficiencia la convierte en una tecnología aun por desarrollar, pero puede servir para hacernos una idea de lo que puede llegar a dar de sí ésta tecnología a largo plazo.

Thin film

Imagen: “Thin Film” fabricado por Eni-MIT Solar Frontiers Research. Center. Fuente: ison21.es

Cabe destacar, el anuncio del IES Fraunhofer (Instituto de Investigación de Energía Solar), centrándose en fundamentos científicos y tecnológicos anunció el pasado año que “está obteniendo resultados notables en la investigación de células solares multi-unión con un potencial de eficiencia de hasta el 50 % bajo luz solar concentrada” utilizando los mejores materiales compuestos y la tecnología de unión para fabricar la célula solar de cuatro conexiones, con la ayuda de la tecnología francesa de la empresa Soiltec.

ENERGÍA SOLAR TÉRMICA

La energía solar térmica es una tecnología muy eficaz para aprovechar la energía solar proveniente del sol. Su funcionamiento consiste en concentrar la energía del sol y transformarla en calor, aprovechándolo para diferentes aplicaciones en el ámbito edificatorio.

España se encuentra en una zona geográfica idílica, por su situación y climatología, para aprovechar este tipo de energía ya tiene un elevado índice de horas de sol. La radiación solar media en la zona central de la península es la equivalente a 1600 kw/h por metro cuadrado al año.

La radiación solar es aprovechada, captada mediante los denominados colectores solares, que concentran e intensifican el efecto térmico producido por la radiación solar. Un colector solar utiliza dicha radiación para calentar un fluido (agua) a una determinada temperatura, esta temperatura dependerá del tipo de colector, pudiéndose dar tres sistemas en diferentes niveles, según sean de baja, media o alta temperatura.

Realmente para el uso edificatorio no es necesaria la utilización de sistemas de alta temperatura salvo en algunas excepciones, ya que con sistemas de baja temperatura se podrían suplir hasta dos tercios del consumo de agua caliente. Las ventajas de los sistemas de baja temperatura es su simplicidad, fácil instalación y sobre todo son rápidamente amortizables. Por estas razones se contemplará únicamente este tipo.

El principal elemento, es el captador solar, siendo el tipo de colector el que determina el nivel de clasificación del sistema general, una instalación de baja temperatura está formada por tres subsistemas:

  • Subsistema de captación, formado por los colectores solares conectados.

 

  • Subsistema de acumulación, formado por uno o varios depósitos de almacenamiento de agua caliente, regulando la disponibilidad de energía según la demanda.

 

  • Subsistema de distribución, formado por el equipo de regulación, tuberías, bombas, elementos de seguridad y demás. Son los que distribuyen el agua caliente producida.

 

Éste es el esquema básico, sin embargo podemos encontrar muchas variaciones. Existen sistemas incluso que producen vapor capaz de mover una turbina que alimenta un generador de energía eléctrica, o los que transportan el agua caliente directamente a donde se va a usar, sin ningún sistema de almacenamiento intermedio.

Los Colectores de baja temperatura no utilizan ningún dispositivo para concentrar los rayos solares. La temperatura del fluido a calentar está por debajo del punto de ebullición del agua. Existen 3 tipos básicos de colectores de baja temperatura:

1. Colector no vidriado: compuestos por una gran cantidad de tubos de metal o plástico dispuestos en serpentín, por los que circula el fluido que aumentará de temperatura. No utilizan caja ni cubierta de cristal, por esta razón, el aumento de temperatura es bajo, en torno a los 30°C. Se suelen utilizar para calentar el agua de piscinas, ya que las pérdidas de calor son altas lo que limita su uso a otro tipo de instalaciones.
2. Colector de placa plana: su uso está mucho más extendido, ya que tienen una mejor respuesta, consiguen aumentos de temperatura de hasta unos 60°C, son los más recomendables para el calentamiento de agua de uso sanitaria o calefacción por suelo radiante.

Colector placa plana

Imagen: Colector de placa plana tipo. Fuente: agroterra.com

Compuesto por:

  • Cubierta exterior: cristal de vidrio simple o doble. Función de efecto invernadero, reduce pérdidas de calor y hace estanco el colector.

 

  • Absorbedor: placa metálica sobre la que se encuentra soldada una tubería de cobre formando un serpentín. Aumenta la superficie de contacto con el exterior favoreciendo el intercambio de calor. La superficie absorbente de calor se suele recubrir con pintura negra.

 

  • Aislante térmico: recubre todos los laterales y la parte posterior del colector, reduciendo las pérdidas de calor a través de la carcasa. Aislante corriente.

 

  • Carcasa: caja que contiene todos los componentes del colector. Mantiene el interior sellado otorgando rigidez al conjunto, generalmente es de aluminio debido a su poco peso y resistencia a la corrosión.

 

3. Colector de tubos de vacío: este tipo de colectores alcanzan temperaturas mayores que los colectores de placa plana. Pueden alcanzar temperaturas de hasta 100°C, son idóneos para la generación de agua caliente en procesos industriales. Otro uso que se les puede dar es el de alimentar una instalación de calefacción con radiadores convencionales o para calentar el fluido de entrada de una caldera. Su funcionamiento es idéntico a los de placa plana sustituyendo el vidrio exterior de éstos por los propios tubos que contienen en su interior las tuberías que transportan el fluido, al encontrarse al vacío no hay transmisión de calor al exterior por lo que tienen una eficiencia mucho mayor. Son los más aconsejables para climas con menor radiación solar.

 

Colector tubo

Imagen: Colector solar de tubos de vacío. Fuente: anpasol.com

Los colectores de media temperatura son capaces de concentrar la radiación solar en una superficie reducida, por ello son capaces de alcanzar temperaturas más altas, su temperatura de trabajo suele variar entre 100 y 300°C, los más habituales son los cilíndrico-parabólicos. Mediante los espejos parabólicos concentran la radiación en un punto, se construyen en forma de sectores cilíndricos y en dicho foco es por donde fluye el líquido a calentar, suele ser aceite transmitiendo el calor posteriormente al medio deseado. Las altas temperaturas que alcanzan se utilizan para generar vapor a presión, que hace girar una turbina para obtener la electricidad. El único inconveniente es que deben orientarse continuamente de manera exacta, siguiendo el movimiento del sol, además los materiales que soportan temperaturas altas deben ser especiales, lo que aumenta su coste.

En el caso de los colectores de alta temperatura superan los 400°C pudiéndose alcanzar temperaturas operativas de hasta 1000°C, llevan al extremo la concentración de la radiación recibida por grandes extensiones de panel en un solo punto. Actualmente se están utilizando a gran escala en las denominadas centrales termo-solares.

Planta termo-solar

Imagen: Planta de energía termo-solar en Andalucía. Fuente: lainformacion.com

El funcionamiento de este tipo de colector solar de alta temperatura consiste en un campo de heliostatos, espejos que siguen la trayectoria del sol de manera automática, que concentran la radiación solar que captan en un solo punto, normalmente en el pináculo de una torre. Sin embargo se puede dar otra variante, en la que los espejos parabólicos concentran los rayos solares en un punto preciso situado en el foco del paraboloide, alcanzando temperaturas de hasta 900°C.

También es importante conocer las diferentes variantes en una instalación de energía solar térmica según el tipo de circulación y el tipo de sistema. El circuito de una instalación puede ser cerrado o abierto.

El circuito cerrado es el más utilizado en este tipo de instalaciones, diferenciando dos circuitos independientes entre sí, el primario contiene el fluido que transporta el calor y por el secundario circula el agua caliente de consumo, el calor es cedido de uno a otro mediante un intercambiador de calor. Este circuito es el más adecuado ya que se puede elegir el fluido que más nos convenga desde el punto de vista de su eficiencia térmica.

En el caso del circuito abierto, el fluido que transporta el calor es utilizado directamente, es el mismo fluido que va al depósito, sin intercambio energético, lo cual evita las posibles pérdidas durante el proceso, además de esto la principal ventaja es su simplicidad. Sin embargo, se debe cuidar que no exista ningún material contaminante en el colector que se pueda transmitir a las tuberías o aditivos como anticongelantes ya que al utilizar el agua de la red general se produce una mayor corrosión e incrustaciones calcáreas.

La circulación de una instalación solar térmica puede ser forzada, en la que el agua se mueve a través de un sistema por medio de bombas, esto aumenta las posibilidades de regular el sistema por parte del usuario pero requiere de otra fuente de energía para alimentar las bombas; o natural, en la que no se necesita ningún mecanismo que impulse el fluido, el agua fría entra por la parte inferior del colector y se va calentando, disminuye su densidad y se va impulsando hacia arriba, en el depósito acumulador el agua caliente desplaza al agua fría, es el caso de la primera imagen (colector de placa plana) en la que el depósito acumulador se encuentra en la parte superior del colector solar. El problema de este sistema es el peligro de congelación en épocas más frías, además de ser necesaria la instalación de un purgador o vaso de expansión.

La energía solar térmica es compatible con:

 

  • Fotovoltaica.
  • Eólica.
  • Caldera Biomasa sólo cuando la caldera se diseña para calefacción.
  • Geotermia.
  • Enfriadora por absorción (frío solar).

Es incompatible con:

 

  • Cogeneración.

PROTECCIÓN CONTRA LA RADIACIÓN SOLAR

Como es lógico, en las épocas de mayor radiación solar es necesario reducir los aportes energéticos producidos por la incidencia del sol en la edificación al mínimo. Como ya hemos estudiado algunas técnicas o soluciones constructivas como los aislamientos, son validos indistintamente de la época del año, sin embargo no es así en todos los casos, como en el caso concreto de los sistemas de captación solar pasiva, destinados a conseguir recoger la mayor cantidad de calor posible, más adelante estudiaremos estos sistemas.

Durante el verano, el sol se encuentra en una posición más alta que en invierno, esto evita que una gran parte de los rayos de sol penetren de manera directa por los huecos que se encuentran orientados al sur. Para conseguir evitar por completo la radiación se puede optar por diseñar voladizos o pantallas que proyecten sobra, dimensionándolos según la orientación  y teniendo en cuenta el recorrido solar anual. De este modo durante el invierno la radiación incide en el interior de la edificación mientras que en verano se impide la radiación directa.

El comportamiento de la carpintería también es importante, si colocamos vidrios aislantes o incluso reflectantes mejoraría el comportamiento del acristalamiento, que ya de por sí tiene un coeficiente de transmisión más bajo cuando la radiación es oblicua.

Acristalamiento

Imagen: Radiación, comportamiento de un buen acristalamiento. Fuente: cecalca.com

Aunque éstas soluciones pueden parecer definitivas a priori, se plantean una serie de inconvenientes que hacen que sea necesario reforzarlas.

El principal inconveniente es la posición del sol durante los días más calurosos del año. Generalmente suelen coincidir con los últimos días de julio y primeros de agosto, en los que tras pasar el solsticio de verano, va reduciendo su altura y de ese modo los rayos pueden penetrar mejor por los huecos de la fachada. Otro inconveniente son las horas de sol, son días más largos en los que no hay casi nubosidades y los aportes energéticos son mayores. Por esta razón se requiere de sistemas que proyecten sombra o impidan la radiación solar.

Entre las diferentes opciones que se pueden adoptar cabría destacar las siguientes:

  • Toldos, celosías y pérgolas: como se ha mencionado anteriormente son soluciones ajustables según las necesidades. También se pueden utilizar plantas trepadoras para las pérgolas.
  • Lamas direccionales, persianas o contraventanas: para que impidan que gran parte de la radiación solar atraviese, limitando  así su entrada a través de los huecos. Dependiendo del modelo pueden bloquear demasiada luz.
  • Aleros: ya sean fijos o con vegetación de hoja caduca. Los aleros con vegetación deben preferiblemente ser más largos y colocar una maya metálica que deje pasar la luz.

El ciclo vital de las plantas generalmente coincide con las estaciones de modo que al utilizar vegetación de hoja caduca, las hojas se caen en inverno permitiendo la entrada de la radiación solar, mientras que durante el verano la impiden.

  • Arboles y vegetación: Plantar árboles o vegetación de hoja caduca, frente a la fachada sur refrescará el ambiente de manera inmediata y proyectará sombra sobre nuestro edificio.

Además si se diseña el perfil de las jambas de las puertas y las ventanas a 90° con respecto al plano de fachada, se reduciría también la entrada de radiación solar.

Estas soluciones se pueden aplicar en distintas facetas de la edificación, siendo muchas de ellas perfectamente válidas para los cerramientos, como la utilización de la vegetación. Es recomendable utilizar colores claros que reflejen la luz solar. Como ya sabemos la cubierta y las fachadas este y oeste también reciben un gran índice de radiación solar a lo largo del día, por lo que se procurará limitar la entrada de luz destinando los escasos huecos existentes a la ventilación y a la iluminación natural.